A Universal Generator for Bivariate Log-concave Distributions

نویسنده

  • Wolfgang Hh Ormann
چکیده

Diierent universal (also called automatic or black-box) methods have been suggested to sample from univariate log-concave distributions. The description of a universal generator for bivariate distributions has not been published up to now. The new algorithm for bivariate log-concave distributions is based on the method of transformed density rejection. In order to construct a hat function for a rejection algorithm the bivariate density is transformed by the logarithm into a concave function. Then it is possible to construct a dominating function by taking the minimum of several tangent planes which are by expo-nentiation transformed back into the original scale. The choice of the points of contact is automated using adaptive rejection sampling. This means that a point that is rejected by the rejection algorithm is used as additional point of contact until the maximal number of points of contact is reached. The paper describes the details how this main idea can be used to construct Algorithm ULC2D that can generate random pairs from bivariate log-concave distribution with a computable density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Universal Generator for Discrete Log-concave Distributions

We give an algorithm that can be used to sample from any discrete log-concave distribution (e.g. the binomial and hypergeometric distributions). It is based on rejection from a discrete dominating distribution that consists of parts of the geometric distribution. The algorithm is uniformly fast for all discrete log-concave distributions and not much slower than algorithms designed for a single ...

متن کامل

Short universal generators via generalized ratio-of-uniforms method

We use inequalities to design short universal algorithms that can be used to generate random variates from large classes of univariate continuous or discrete distributions (including all log-concave distributions). The expected time is uniformly bounded over all these distributions for a particular generator. The algorithms can be implemented in a few lines of high level language code.

متن کامل

Log-Concavity of Combinations of Sequences and Applications to Genus Distributions

We formulate conditions on a set of log-concave sequences, under which any linear combination of those sequences is log-concave, and further, of conditions under which linear combinations of log-concave sequences that have been transformed by convolution are log-concave. These conditions involve relations on sequences called synchronicity and ratio-dominance, and a characterization of some biva...

متن کامل

The entropic barrier: a simple and optimal universal self-concordant barrier

We prove that the Fenchel dual of the log-Laplace transform of the uniform measure on a convex body in Rn is a (1 + o(1))n-self-concordant barrier. This gives the first construction of a universal barrier for convex bodies with optimal self-concordance parameter. The proof is based on basic geometry of log-concave distributions, and elementary duality in exponential families.

متن کامل

Inference and Modeling with Log-concave Distributions

Log-concave distributions are an attractive choice for modeling and inference, for several reasons: The class of log-concave distributions contains most of the commonly used parametric distributions and thus is a rich and flexible nonparametric class of distributions. Further, the MLE exists and can be computed with readily available algorithms. Thus, no tuning parameter, such as a bandwidth, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995